

ENERGY Energy Efficiency & Renewable Energy

2019 PROJECT JEW

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

Industry Partnerships: Mechanisms, Opportunities, and Success Stories March 5, 2019

Liz Moore

Technology Manager

Advanced Development &

Optimization

1 | Bioenergy Technologies Office eere.energy.gov

Variety of Funding Programs

- BETO Funding Opportunity Announcement
 - Posted on EERE-Exchange (https://eere-exchange.energy.gov/)
 - Grants, Cooperative Agreements
 - Cost Share requirement
 - May be informed by BETO workshops, RFIs
- Direct Funding Opportunities (DFO)
 - Supplementary to consortia
 - AOP between BETO/Lab
 - CRADA or other between Industry/Lab
- Biomass Research and Development Initiative (BRDI)
 - USDA/DOE Joint FOA
 - Technical areas: Feedstocks development, Biofuels and biobased products development, and Biofuels development analysis
 - Cost Share requirement
 - Award may be issued by either agency

Variety of Funding Programs

- Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR)
 - Managed by Office of Science
 - Potential for follow-on phases
 - Topics complementary to BETO portfolio
 - https://science.energy.gov/sbir/
- Technology Commercialization Fund (TCF)
 - Congressionally mandated (EPAct 2005, Section 1001e)
 - Run by the Department of Energy Office of Technology Transitions
 - TCF Goal: Perform technology maturation with the intent of attracting a private partner that is willing to support the (national lab) technology's commercialization
 - https://www.energy.gov/technologytransitions/services/technology-commercialization-fund

Variety of Funding Mechanisms - Other

- DPA Title III Advanced Drop-in Biofuels Production Project
 - Defense Production Act (DPA)
 - MOU between **Department of the Navy**, USDA, DOE
 - Fulcrum Bioenergy, Red Rocks Biofuels
- Small Business Voucher (SBV program on hold)
 - Target population: small businesses (SB)
 - Provide SBs access to DOE national laboratories (staff & facility resources)

Keep In Touch

https://www.energy.gov/eere/bioenergy

Panel Members

- Jim Dooley, PhD, PE
 Chief Technology Officer
 Forest Concepts, LLC
- Andrew Conley, PhD
 Director of Metabolic Engineering
 Lygos
- Laurel Harmon, PhD
 Vice President, Government Affairs
 LanzaTech

$forest concepts^{m}$

Jim Dooley

jdooley@forestconcepts.com

Forestconcepts.com

3320 W Valley Hwy N. D110, Auburn, WA 98001

Precision feedstock supplier to the emerging bioeconomy

Upstream technology provider for advanced bioprocessing industry

Inventor and developer of innovative bio-based products and materials

Doing business since 1998...

forestconcepts[™]

What are Crumbles® Feedstocks?

- Physical properties are optimizable for spec conversion processes
 - Length/ Aspect Ratio
 - Thickness
 - Moisture
 - Uniformity of size
 - Flowability
 - Miscibility with catalysts, ...
- Sheared rather than pulverized

The Biomass Supply Chain

Related Forest Concepts' technologies:

Panel Member Presentations – Forest Concepts

- Low-Energy Rotary Shear for Sub-millimeter Particle Production (SBIR, Monday Poster)
- Investigating and Addressing the Wear Issue of the Rotary Shear Biomass Comminution System (FCIC, Tuesday Poster)
- Improved Biomass Feedstock Materials Handling and Feeding Engineering Data Sets, Design Methods, and Modeling/Simulation Tools (ADO A&M, Thursday 11:30 a.m.)

LYGOS

We engineer microbes to produce bioproducts

<u>Vision</u>: \$B global biotechnology company specializing in innovative **monomers** and **materials** from renewable feedstocks

<u>Mission</u>: Building the future by replacing petrotech with biotech to make <u>better</u> products sustainably

<u>Strategy</u>: Work with <u>partners</u> to leverage Lygos' technology platform to quickly bring new molecules to market to create safer products with value-added performance

Execute on commercializing the malonates platform and leverage the platform to accelerate commercialization of new product programs

LYGOS

Technology Platform Differentiators

Our competitive advantage comes from our focus on developing a platform with depth, vertically integrated from the microbe through to materials

Low pH Yeast Platform

The microbe enabling production of compounds not readily accessible using other host organisms

Focused on organic acids & malonyl-CoA based chemicals today

DOE SBIR awards

BioFab and Codebase

The physical tools, software, and genetic info needed for high-throughput R&D

Enabling researchers to do more,

BETO awards

Machine Learning and Al

A critical tool used to solve complex biological & material problems

We believe value is locked up in the data, not the algorithms

Agile BioFoundry

New Materials Development

A value-multiplier layered on top of the monomer programs

Deliver novel materials addressing performance gaps with current solutions

Panel Member Presentations - Lygos

- Two-Phase Production of an Organic Acid with CO₂
 Sequestration (SBIR, Monday Poster)
- Implementing a Design, Build, Test, Learn P. Kudriavzevil Engineering Cycle for Production of an Organic Acid Product (ABF, Tuesday Poster)
- Accelerating Engineered Microbe Optimization Through Machine Learning and Multiomics Datasets (BEEPS, Tuesday Poster)
- Fermentative Production of Tricarboxylic Acid Cycle-Derived Chemicals using Cellulosic Sugars (Biochemical Conversion, Wednesday 1:50 p.m.)

Recycling Carbon

Case Study: Building a Synthetic Biology Platform For Acetogens

Less than 10 years ago, gas-fermenting acetogens were considered genetically in accessible

Today, a suite of tools and technologies across the development cycle is available

Case Study: History of Ethanol to Jet and Chemicals

Panel Member Presentations - LanzaTech

- Development of a Sustainable Green Chemistry Platform for Production of Acetone (Biochemical Conversion, Wednesday 2:15 p.m.)
- Data Integration and Deep Learning for Continuous Gas Fermentation Optimization (ABF, Tuesday Poster)
- CCB DFAs: Terephthalic Acid Synthesis from Ethanol via p-Methyl Benzaldehyde (Catalytic Upgrading, Wednesday 10:15 a.m.)
- CCB DFAs: Improved Value of the Gasoline and Fuel Oil Co-Product Fractions (Catalytic Upgrading, Wednesday 10:45 a.m.)
- Production of Bioproducts from Electrochemically-Generated C1 Intermediates (BEEPS, Tuesday Poster)
- Ultra-low Sulfur Winterized Diesel (PDABB, Tuesday Poster)

